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1  | INTRODUC TION

Alzheimer's disease (AD) is a progressive neurodegenerative dis-
ease that reduces the quality of patients’ daily life as their cogni-
tive and functional abilities decline.1 A growing number of studies 
suggest that the disruption of functional connectivity (FC) among 
brain regions may be an early outcome of neurotoxic β-amyloid (Aβ) 

aggregation in AD.2 Abnormal FC may eventually lead to a decline in 
high-level cognitive functions.3

Recent advances in neuroimaging techniques provide the 
opportunity to study disconnections (ie, a disruption of FC) in 
AD in vivo. Studies using resting-state functional magnetic res-
onance imaging (R-fMRI) have shown that statistical correlations 
of spontaneous activities exist between functionally correlated 
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Abstract
Aims: Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Previous 
studies have demonstrated abnormalities in functional connectivity (FC) of AD under 
the assumption that FC is stationary during scanning. However, studies on the FC 
dynamics of AD, which may provide more insightful perspectives in understanding 
the neural mechanisms of AD, remain largely unknown.
Methods: Combining the sliding-window approach and the k-means algorithm, we 
identified three reoccurring dynamic FC states from resting-state fMRI data of 26 
AD and 26 healthy controls. The between-group differences both in FC states and 
in regional temporal variability were calculated, followed by a correlation analysis of 
these differences with cognitive performances of AD patients.
Results: We identified three reoccurring FC states and found abnormal FC mainly in 
the frontal and temporal cortices. The temporal properties of FC states were changed 
in AD as characterized by decreased dwell time in State I and increased dwell time 
in State II. Besides, we found decreased regional temporal variability mainly in the 
somatomotor, temporal and parietal regions. Disrupted dynamic FC was significantly 
correlated with cognitive performances of AD patients.
Conclusion: Our findings suggest abnormal dynamic FC in AD patients, which pro-
vides novel insights for understanding the pathophysiological mechanisms of AD.
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brain regions.4 In relation to AD, abnormal FC has been found in 
functional hub regions,5,6 neural circuits,7,8 and the whole-brain 
level.9,10 Despite these advances, previous studies mostly as-
sumed that the FC was constant during MRI scanning, ignoring its 
dynamic nature.11,12

Compared to stationary FC, dynamic FC allows investigating the 
R-fMRI time series on a much finer scale (eg, at specific time points 
or within predefined time windows), which provides two exclusive 
advantages. On one hand, dynamic FC facilitates the observation of 
details that are averaged out in stationary FC and may offer greater 
insight into the fundamental mechanisms of FC. On the other hand, 
dynamic FC enables the capture of spontaneously reoccurring FC 
patterns (ie, FC states), which is essential for understanding the tem-
poral variability in the intrinsic organization of the brain. Based on 
these advantages, researchers have found that dynamic FC is a po-
tential sensitive biomarker for neuropsychiatric disorders, such as 
schizophrenia,13 autism,14 and Parkinson's disease.15 To our knowl-
edge, only a few studies have examined the FC dynamics associated 
with AD.16-18 Among these studies, Jones et al17 focused on demon-
strating the nonstationary nature of the brain's modular organization 
and only used AD for validation; Fu et al16 and Schumacher et al18 
were more concerned about comparing the FC dynamics profile (ie, 
dwell time in each state) of AD with that of the other subtypes of 
dementia. Besides, all these studies were conducted based on func-
tional networks constructed from independent component analysis, 
which restricts the resolution of their findings. Hence, comprehen-
sive and in-depth investigations of the unique features and temporal 
properties of FC dynamics in AD compared with healthy controls 
(HCs) are still lacking.

To fill this gap, we first employed the sliding-window approach 
and the k-means algorithm to identify FC states that reoccur over 
time. Then, the FC patterns under each state and the temporal prop-
erties of the FC states were explored. Furthermore, we evaluated 
the temporal variability of regional FC along the entire time series. 
Finally, the correlation analyses between the above indicators of FC 
dynamics and AD cognitive performances were performed.

2  | MATERIAL S AND METHODS

2.1 | Participants

Twenty-six AD patients and twenty-six age- and sex-matched 
HCs with resting-state fMRI data from the Alzheimer's Disease 
Neuroimaging Initiative (ADNI)-2 database (http://adni.loni.usc.
edu/) were used in this study. The AD patients met the criteria of 
the National Institute of Neurological and Communicative Disorders 
and Stroke and the AD and Related Disorders Association (NINCDS/
ADRDA) for probable AD. Disease severity was assessed in AD 
using the Clinical Dementia Rating (CDR). All participants under-
went an examination of Mini-Mental State Examination (MMSE) and 
Neuropsychiatrie Inventory (NPI). The inclusion criteria for HC were 
as follows: (a) no neurological or psychiatric disorders, such as mild 
cognitive impairment, depression, or epilepsy; (b) no abnormal find-
ings, such as infarction or focal lesion in conventional brain MR im-
aging; and (c) MMSE score beyond 27. The demographic and clinical 
data of the participants are listed in Table 1.

2.2 | Data acquisition and preprocessing

All participants were scanned on a 3.0 T Philips scanner. MRI acquisi-
tions were performed according to the ADNI acquisition protocol.19 
R-fMRI was obtained using an echo-planar imaging (EPI) sequence 
and the following parameters: repetition time (TR) = 3000 ms, echo 
time (TE) = 30 ms, flip angle = 80°, number of slices = 48, slice thick-
ness = 3.313 mm, voxel size = 3 mm × 3 mm × 3 mm, voxel ma-
trix = 64 × 64, and total volume = 140. Image preprocessing was 
carried out using the Data Processing Assistant for Resting-State 
fMRI (DPARSF) toolbox and SPM820 (http://www.fil.ion.ucl.ac.uk/
spm). For each participant, the preprocessing steps included dis-
carding the first five volumes, correcting head motion, normalizing 
to the Montreal Neurological Institute (MNI) template, resampling 
to 3 × 3 × 3 mm3, regressing out the nuisance variables (Friston's 24 

 Healthy controls
Patients with Alzheimer's 
disease

P-
value

Gender 11 M, 15 F 12 M, 14 F .780

Age (SD) 75.7 (6.2) 74.6 (6.5) .832

MMSE (SD)* 29.04 (1.33) 21.18 (3.2) <10-3

CDR* 0 (n = 19), 0.5 (n = 2), 1 (n = 1) 0.5 (n = 6), 1 (n = 15), 2 (n = 1) <10-3

NPI (SD)* 0.71 (1.31) 4.59 (3.92) <10-3

Note: Four AD patients had no MMSE, CDR, or NPI score. Four HC had no CDR score, while three 
of whom neither had MMSE score. Excepting these four HC, five other HCs had no NPI score. The 
two-sample two-tailed t-test was performed to examine between-group differences in age and 
MMSE, Mann-Whitney U-test was used for NPI, and chi-square test was performed for gender and 
CDR.
The asterisk indicates a significant between-group difference (P < .05).
Abbreviation: AD, Alzheimer's disease; CDR, Clinical Dementia Rating; HC, healthy control; MMSE, 
Mini-Mental State Examination; NPI, Neuropsychiatrie Inventory.

TA B L E  1   Participant demographic and 
clinical characteristics

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.fil.ion.ucl.ac.uk/spm).
http://www.fil.ion.ucl.ac.uk/spm).
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head motion parameters, global signal, white matter, and cerebrospi-
nal fluid signals), and filtering (0.01 Hz–0.08 Hz).

2.3 | Construction of dynamic functional networks

Dynamic functional brain network construction was carried out 
using graph theoretical network analysis21 (GRETNA, http://www.
nitrc.org/proje cts/gretn a/). The nodes were defined by 625 similar-
size brain regions according to the automated anatomical labeling 
(AAL) atlas landmark.22,23 Dynamic FC was estimated with the 
widely used sliding-window method.12,15 Specifically, we computed 
Pearson correlation coefficients between each pair of nodes using 
the time course segment within a time window. The window length 
was set as 10 TRs (ie, 30 s) according to previous studies.24,25 By 
moving the time window forward by a step of one TR (ie, 3 s), we 
obtained a total of 126 625 by 625 symmetric correlation matrices 
for each participant. With each correlation matrix representing the 
FC pattern in one time window, these correlation matrices could 
capture the dynamic changes of FC during the resting-state scan pe-
riod and were used as inputs for further analyses of FC states and 
temporal variability.

2.4 | Detection of dynamic functional 
connectivity states

To assess the architecture and the frequency of reoccurring FC 
patterns, the k-means algorithm26 was applied to group correlation 
matrices according to their L1 distances. First, a subsampling pro-
cedure was carried out to facilitate determining the optimal cluster 
number and the initial cluster centroids. Similar to EEG microstate 
analysis,26 the subsampling procedure first chose the correlation 
matrices with locally maximal FC variance (ie, matrices whose L1-
norm was 1.5 standard deviation away from the L1-norm of the 
mean correlation matrix) for each participant.12 Thus, 767 matrices 
of the 52 participants (14.3 ± 3.3 matrices per AD patient, 15.2 ± 3.5 
matrices per HC) were obtained. Second, the k-means algorithm was 
used to group these 767 matrices into k clusters. To determine the 
optimal cluster number, we varied k from two to nine and repeated 
the k-means procedure 100 times for each k value. The validity of 
the clustering results was evaluated using the Silhouette score and 
the Calinski-Harabasz index.27 The elbow criterion based on the 
Silhouette score and the peak value of the Calinski-Harabasz index 
both indicated three as the most appropriate cluster number (k = 3). 
Finally, initiated by the three cluster centroids obtained from the 767 
matrices, the k-means algorithm was further used to group the 6552 
correlation matrices derived from all participants into three clusters 
(ie, dynamic FC states).

Based on the dynamic FC states identified from k-means cluster-
ing, we calculated a participant-specific FC matrix for each partici-
pant at each state. Specifically, each element in the matrix was the 
median of the corresponding elements in the participant's matrices 

belonging to one state. Then, the differences between AD and HC in 
the participant-specific FC matrices were evaluated for each state. 
We also examined the between-group differences in the temporal 
properties of the dynamic FC states from three aspects, includ-
ing the mean dwell time of each state (ie, the average number of 
windows that participants spent on one state), the mean number 
of state transitions (ie, the average number of transitions that oc-
curred between any two states), and the distribution of transition 
frequency (ie, the fraction of state transitions with a specific source 
and target).15

2.5 | Temporal variability of regional functional 
architecture

After investigating the differences in FC dynamics between the AD 
and HC groups from the perspective of dynamic FC states at the 
whole-brain level, we further investigated the between-group dif-
ferences from the perspective of the temporal variability of FC in 
each brain region. Specifically, for each participant, we first meas-
ured the temporal stability of FC in brain region k by the average 
Pearson correlation coefficient between the k-th row of every two 
correlation matrices. Then, the temporal variability Vk of region k can 
be described by one minus the temporal stability,28 that is,

where n = 126 is the total number of windows and �Fi,k ,Fj,k is the Pearson 
correlation coefficient between the FC profiles of region k in the cor-
relation matrices derived from the i-th and the j-th windows (i, j = 1, 2, 
…, n; i ≠ j; k = 1, 2, …, 625).

2.6 | Statistical analyses

When performing data statistics, we firstly adopted the Lilliefors test 
to test the distribution of continuous variables for normality. The 
two-sample t-test or general linear model (GLM) analysis was used 
accordingly for normally distributed data, whilst the Mann-Whitney 
U-test was used for non-normally distributed data. More specifi-
cally, to compare the demographic and clinical data of the partici-
pants between AD and HC, the two-sample t-test, chi-square test, 
and Mann-Whitney U-test were used as appropriate. To evaluate the 
difference in the participant-specific FC matrix between AD and HC, 
the GLM analysis was performed in a univariate manner with age 
and gender as covariates [P < .05, false discovery rate (FDR) cor-
rected]. After identifying significantly increased/decreased FC in AD 
compared to HC, the receiver operating characteristic (ROC) analy-
sis was performed to confirm their effectiveness for distinguishing 
AD from HC. For calculating the temporal properties’ differences 
between AD and HC, the Mann-Whitney U-test was used after con-
trolling age and sex (P < .05, FDR corrected). The between-group 

Vk=1−

∑

i≠j �Fi,k ,Fj,k

n×
�

n−1
� ,

http://www.nitrc.org/projects/gretna/).
http://www.nitrc.org/projects/gretna/).
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comparison of nodal temporal variability (ie, Vk) was performed 
using the GLM with age and sex controlled (P < .05, FDR corrected). 
Finally, to investigate whether FC dynamics were related to the clini-
cal performance of AD, we set age and sex as controlled variables 
and computed the partial correlation coefficients between the clini-
cal measures (ie, MMSE and NPI) and the following three indicators: 
(a) the median strength of FC with significant between-group differ-
ences at each state; (b) the three temporal properties of the dynamic 
FC states (ie, mean dwell time, mean transition number, and transi-
tion frequencies between states); and (c) the temporal variability of 
the regions that exhibited significant between-group differences.

2.7 | Validation analysis: Effect of head motion

Recent studies have suggested that head motion can produce a 
marked influence on R-fMRI.29,30 To validate our results, we added 
bad time points as an additional regressor into the nuisance covari-
ate regression model, with the threshold of bad time points set as 
the framewise displacement of head motion above 0.5 mm as well 
as one back and two forward neighbors.31 Then, we reanalyzed our 
data to examine our main results.

3  | RESULTS

3.1 | Identification of dynamic functional 
connectivity states

Using the k-means algorithm, we identified three reoccurring FC 
states and found that windows were more likely to be in States I and 
II but less likely to be in State III (Figure 1A). Significant between-
group differences were found in the FC of States I and II (P < .05, 
FDR corrected, Figure 1B,C). In State I, five edges exhibited sig-
nificant between-group differences (Figure 1B). Among them, the 
two significantly increased edges ('AD > HC') connected the right 
parahippocampal gyrus with the right medial temporal cortex and 
left medial temporal cortex with the right medial temporal pole. The 
other three significantly decreased edges ('AD < HC') were between 
the left paracentral lobe and the right medial temporal cortex, be-
tween the left paracentral lobe and the right medial orbitofrontal 
cortex, and between the left medial frontal cortex and the left in-
ferior occipital cortex. In State II, a total of 436 edges were found 
to have significant between-group differences, most of which were 

associated with the frontal cortex (eg, superior frontal cortex and 
middle frontal cortex), temporal cortex (eg, middle temporal cortex 
and hippocampus), insula, and amygdala (Figure 1C).

Intriguingly, detailed examinations of the FC with significant be-
tween-group differences in States I and II found that their signs were 
consistently opposite between AD and HC (Figure 2). This finding 
suggested that FC with significant between-group differences may be 
useful for distinguishing AD and HC. As a validation, we performed 
ROC analyses that classified AD and HC according to the median 
strength of the significantly different (either increased/decreased) FC 
in each state as input features. The area under the ROC curve (AUC) 
was above 0.95, suggesting that abnormalities in dynamic FC could 
serve as potential biomarkers for distinguishing AD from HC.

3.2 | Analyses of the temporal properties of 
dynamic functional connectivity states

Figure 3A shows that significant between-group differences were 
found in the mean dwell time of States I and II but not State III. 
Specifically, among the three states, AD had significantly longer 
mean dwell time in State II than HC (AD: 65.1 ± 9.8; HC: 22.9 ± 5.6, 
P = .015). In contrast, AD had significantly shorter mean dwell time 
in State I than HC (AD: 64.5 ± 9.2; HC: 96.3 ± 7.7, P = .011). Besides, 
by visual inspection, the within-group comparison of the mean dwell 
time in the three states showed that State I and State II were the 
main states of HC and AD, respectively. Figure 3B shows that AD 
had significantly more state transitions than HC (AD: 6.1 ± 0.89; HC: 
3.7 ± 0.84, P = .010). The distribution of state transition frequencies 
is shown in Figure 3C. Visual inspection indicated that most of the 
transitions occurred between States I and II, and State I was asso-
ciated with the largest fraction of transitions in both AD and HC. 
However, it is worth noting that AD transitioned from/to State II 
more frequently than HC did.

3.3 | Analyses on regional temporal variability

Among the 625 regions in the brain network, 57 regions exhibited 
significantly decreased temporal variability in AD compared with 
those of HC (P < .05, FDR corrected), which were mainly distributed 
in the regions of the somatomotor network (SMN), control net-
work (CN), default mode network (DMN), and visual network (VIS) 
(Figure 4 and Table S1).

F I G U R E  1   Dynamic functional connectivity states and their between-group comparisons. (A) The median FC matrix of each state in 
each group. N is the number of participants that the corresponding state occurred in. Each matrix is organized according to the functional 
modules extracted by Yeo et al,54 which divides the 625 regions into seven networks and one uncertain part. (B) Between-group difference 
of functional connectivity in State I (two-sample t-test, P < .05, FDR corrected). (C) Between-group difference of functional connectivity 
in State II (two-sample t-test, P < .05, FDR corrected). For both of (B) and (C), the significantly increased FC in AD compared to HC (ie, 
'AD > HC') was denoted in red, while the significantly decreased FC (ie, 'AD < HC' was denoted in blue. The line width represents the t-value 
of between-group comparison, and the node size represents the number of edges of significant between-group difference. VIS = visual 
network; SMN = somatomotor network; DAN = dorsal attention network; VAN = ventral attention network; LN = limbic network; 
CN = control network; DMN = default mode network; and NN = uncertain network
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3.4 | Relationship of functional connectivity 
dynamics with the clinical performance of 
AD patients

A significant negative correlation was observed between the NPI 
scores of AD patients and the median strength of the significantly 
decreased FC (R = –0.519, P = .023) in State II. A marginally signifi-
cant positive correlation was observed between the NPI scores and 
the median strength of the significantly increased FC (R = 0.443, 
P = .057) in State II. Moreover, the NPI scores of AD patients also 
showed a significant negative correlation with regional temporal var-
iability in the left inferior temporal gyrus (R = –0.553, P = .008), right 
middle temporal gyrus (R = –0.536, P = .010), right caudate nucleus 
(R = –0.521, P = .013), and left superior temporal gyrus (R = –0.430, 
P = .046).

3.5 | Validation results

We validated the reliability of our main findings with respect to 
the influence of head motion. After using regression to correct for 
head motion, three reoccurring dynamic FC states were extracted, 
and they resembled those found in the main analyses (Figure S1). 
Similarly, the ROC analyses based on FC with significant between-
group differences achieved good performance (AUC ≥ 0.99). The 
between-group comparison of the mean dwell time of the three 
states also produced highly compatible results (Figure S2). With re-
spect to the regional temporal variability, 55 of the 57 regions that 
showed significant decreases in the main analyses had recovered in 
the validation analyses. In addition, the validation analyses found 

some additional regions with significantly decreased regional tem-
poral variability, mainly in the SMN and frontal cortex (Figure S3 and 
Table S2).

4  | DISCUSSION

Our main findings are as follows. First, three reoccurring dynamic FC 
states were identified. States I and II both contained FC with statisti-
cally significant between-group differences, which may be helpful to 
identify AD. Moreover, the median strength of FC with significant 
between-group differences in State II was significantly correlated 
with the NPI scores of AD patients. Second, the mean dwell time 
of AD was significantly shorter in State I but significantly longer in 
State II than HC. Third, AD had significantly lower temporal variabil-
ity than HC, mainly in the regions of the SMN, CN, DMN, and VIS. 
Among them, the temporal variability of the left inferior temporal 
gyrus, right middle temporal gyrus, right caudate nucleus, and left 
superior temporal gyrus was significantly correlated with the NPI 
scores of AD patients.

4.1 | Dynamic functional connectivity states

The three reoccurring FC states varied in overall connectivity 
strength and occurrence frequency. To facilitate descriptions and 
interpretation, we named the three states based on their character-
istics. State I was named the baseline state because it had the lowest 
overall connectivity strength and was the only state that presented 
in every participant. In contrast, State III was named the spiking 

F I G U R E  2   Comparison of the FC with significant between-group differences. 'AD > HC' indicates the category of FC significantly 
increased in AD compared to HCs, while 'AD < HC' indicates the opposite category. Each dot in the graphs represents the median strength 
of the corresponding FC category across all the related correlation matrices in one participant
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state because it had the highest overall connectivity strength and 
presented in less than one-third of the participants. Compared with 
States I and III, State II had moderate overall connectivity strength 
and presented in nearly all the AD but only half of the HC. In addi-
tion, State II had the largest number of connections that showed sig-
nificant differences between the AD and the HC. According to these 
results, State II was named the AD-abnormality state.

Except for the rare spiking state, the baseline state and the AD-
abnormality state both contained FC with significant between-group 
differences. The locations of these connections agreed well with 
the regions where abnormalities have been repeatedly reported 
in previous neuroimaging studies on AD, including the hippocam-
pus,32,33 amygdala,33 insula9,33 medial temporal cortex,9,33 and fontal 
cortex.33,34 Intriguingly, the signs of these FCs were often opposite 
between the two groups. Combined with the results of the ROC 

analyses, we speculated that FC with significant between-group dif-
ferences might serve as an effective biomarker for AD. Such find-
ings were also consistent with previous studies that suggested FC 
dynamics might reflect distinct features of neural system functional 
capacity,35,36 and thus offer suggestions for potential biomarkers of 
neurological diseases overlooked by stationary FC analyses.11,37

4.2 | Temporal properties of dynamic functional 
connectivity states

The finding that the most loosely connected baseline state had the 
highest occurrence was also reported by previous studies.12,38 Since 
FC in the resting state was suggested to support information trans-
fer between brain regions,39,40 the high occurrence of the baseline 

F I G U R E  3   Comparison of the temporal properties of the dynamic FC states between the AD and HC groups. (A) Comparison of the 
mean dwell time of each state, where the shadow indicates the standard error of mean (SEM) over the corresponding group and the asterisk 
indicates significant between-group difference (P < .05, FDR corrected). (B) Comparison of the mean transition number, where each black 
dot indicates the mean transition number of each participant, the red dot indicates the mean transition time of the corresponding group, 
and the asterisk indicates that significant difference was found between the AD and HC groups (P < .05, FDR corrected). (C) Mean transition 
frequencies within AD and HC group
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state may suggest that the human brain prefers switching to a state 
where information transfer is less efficient but probably more en-
ergy saving.41 This finding is also consistent with previous studies 
that considered aging as a main cause for longer dwell time in weaker 
FC states.38,42 Compared with HC, AD patients spent less time in the 
baseline state with weak overall connectivity but more time in the 
relatively stronger AD-abnormality state. This result partially sup-
ports the findings of previous stationary FC analyses that AD had 
increased FC, probably the result of a compensating response to the 
degenerated FC.43,44 This result also agrees with a recent study on 
FC dynamics in AD, which used independent component analysis 
to derive the nodes of the functional brain network and reported 
shorter dwell time on the weakest state compared to HC.16 Notably, 
a study that used a similar method found the opposite pattern.18 This 
discrepancy could be attributed to the instability of the independ-
ent component analysis method, in which it is inherently difficulty to 
determine the number of independent components and distinguish 
the true signal from noise.40 Additionally, we found that the median 
strength of the FC with significant between-group differences in 
the AD-abnormality state was significantly correlated with the NPI 
scores of AD patients. Specifically, the significantly increased FC had 
a positive correlation with the NPI, while the significantly decreased 
FC had a negative correlation with the NPI. Our findings were thus 
supportive of the suggestion that connectivity changes in dynamic 
FC states may be behaviorally relevant.45 In addition, since the NPI 
score can reflect the severity of neuropsychiatric characteristics in 
AD, our findings also imply that the AD-abnormality state may be 
closely associated with aberrant motor behaviors and neuropsy-
chiatric symptoms, such as apathy, disinhibition, and dysphoria in 
AD patients. The longer dwell time on the AD-abnormality state 
in AD suggested that it may cost them more energy to cope with 
neuropsychiatric symptoms. Taking the above findings together, we 

concluded that the AD-abnormality state might be a specific, core 
working state of AD.

Additionally, we also observed that the state transition number 
of AD was larger than that of HC, indicating that AD transitioned 
more frequently than HC did. Furthermore, the distribution of tran-
sition frequencies showed that AD was more likely to transition 
between the AD-abnormality state and the baseline state than HC. 
We speculated that AD may not have enough energy to transition to 
the spiking state, which could be partially supported by a growing 
number of studies that have consistently reported hypometabolism 
in AD.46-48

4.3 | Regional temporal variability and its 
correlations with clinical scores

Although AD experienced more state transitions than HC, the re-
gional temporal variability of AD was lower than that of HC, prob-
ably because the FC matrices derived from the AD group tended to 
have lower overall diversity due to a common disease, despite that 
they were clustered into different states. The regions with decreased 
temporal variability were mainly distributed in the SMN, CN, DMN, 
and VIS, consistent with previous findings.5,8,49,50 The decreased 
temporal variability in the SMN and VIS could be related to reduced 
flexibility in sensory, motor, and visual functions. For the DMN and 
CN, the decreased temporary variability might be associated with 
impaired cognitive functions, as the DMN plays a pivotal role in nec-
essary cognitive processes51 and especially influences memory con-
solidation,8 and the CN is involved in cognitive control and has also 
been reported to have hypoconnectivity during AD progression.49 In 
addition, a significantly negative correlation was found between the 
NPI scores of the AD patients and the regional temporal variability 

F I G U R E  4   Brain regions showing 
significant differences in temporal 
variability between AD and HC (P < .05, 
FDR corrected)
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of the left inferior temporal cortex, right middle temporal cortex, left 
caudate lobe, and left superior frontal cortex. Thus, we suggest that 
regional temporal variability might be a potential biomarker to dis-
tinguish AD from HC.

4.4 | Limitations and further considerations

The present work has a few limitations that should be noted. 
First, although our results suggested that the AD-abnormality 
state might be a core and specific state of AD, further confirma-
tory studies in larger datasets are needed. Second, since previous 
studies have found different levels of brain damage at different 
diagnostic stages of AD,52 FC dynamics may also exhibit different 
characteristics as the disease progresses. As the initial goal was to 
investigate the FC dynamics in AD, the diagnostic stages were not 
considered in this article. A prominent future direction would be 
to investigate the change in FC dynamics during the progression of 
AD. Finally, we adopted the widely used sliding-window approach 
to extract FC dynamics in the current study. To avoid potential 
bias, future studies can consider using other extraction methods, 
such as the point-process method,53 to analyze FC dynamics in 
AD.
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